A key feature of federated learning (FL) is to preserve the data privacy of end users. However, there still exist potential privacy leakage in exchanging gradients under FL. As a result, recent research often explores the differential privacy (DP) approaches to add noises to the computing results to address privacy concerns with low overheads, which however degrade the model performance. In this paper, we strike the balance of data privacy and efficiency by utilizing the pervasive social connections between users. Specifically, we propose SCFL, a novel Social-aware Clustered Federated Learning scheme, where mutually trusted individuals can freely form a social cluster and aggregate their raw model updates (e.g., gradients) inside each cluster before uploading to the cloud for global aggregation. By mixing model updates in a social group, adversaries can only eavesdrop the social-layer combined results, but not the privacy of individuals. We unfold the design of SCFL in three steps. \emph{i) Stable social cluster formation. Considering users' heterogeneous training samples and data distributions, we formulate the optimal social cluster formation problem as a federation game and devise a fair revenue allocation mechanism to resist free-riders. ii) Differentiated trust-privacy mapping}. For the clusters with low mutual trust, we design a customizable privacy preservation mechanism to adaptively sanitize participants' model updates depending on social trust degrees. iii) Distributed convergence}. A distributed two-sided matching algorithm is devised to attain an optimized disjoint partition with Nash-stable convergence. Experiments on Facebook network and MNIST/CIFAR-10 datasets validate that our SCFL can effectively enhance learning utility, improve user payoff, and enforce customizable privacy protection.
translated by 谷歌翻译
With the rapid development of cloud computing, virtual machine scheduling has become one of the most important but challenging issues for the cloud computing community, especially for practical heterogeneous request sequences. By analyzing the impact of request heterogeneity on some popular heuristic schedulers, it can be found that existing scheduling algorithms can not handle the request heterogeneity properly and efficiently. In this paper, a plug-and-play virtual machine scheduling intensifier, called Resource Assigner (ReAssigner), is proposed to enhance the scheduling efficiency of any given scheduler for heterogeneous requests. The key idea of ReAssigner is to pre-assign roles to physical resources and let resources of the same role form a virtual cluster to handle homogeneous requests. ReAssigner can cooperate with arbitrary schedulers by restricting their scheduling space to virtual clusters. With evaluations on the real dataset from Huawei Cloud, the proposed ReAssigner achieves significant scheduling performance improvement compared with some state-of-the-art scheduling methods.
translated by 谷歌翻译
This paper focuses on the prevalent performance imbalance in the stages of incremental learning. To avoid obvious stage learning bottlenecks, we propose a brand-new stage-isolation based incremental learning framework, which leverages a series of stage-isolated classifiers to perform the learning task of each stage without the interference of others. To be concrete, to aggregate multiple stage classifiers as a uniform one impartially, we first introduce a temperature-controlled energy metric for indicating the confidence score levels of the stage classifiers. We then propose an anchor-based energy self-normalization strategy to ensure the stage classifiers work at the same energy level. Finally, we design a voting-based inference augmentation strategy for robust inference. The proposed method is rehearsal free and can work for almost all continual learning scenarios. We evaluate the proposed method on four large benchmarks. Extensive results demonstrate the superiority of the proposed method in setting up new state-of-the-art overall performance. \emph{Code is available at} \url{https://github.com/iamwangyabin/ESN}.
translated by 谷歌翻译
Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles). Recent work ignores features other than surface strings. In this paper, we explore expressive features for this task to achieve more effective data utilization. Particularly, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions. We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation. Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. Our code is available at https://github.com/DeepLearnXMU/HGSR.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Open-set object detection (OSOD) aims to detect the known categories and identify unknown objects in a dynamic world, which has achieved significant attentions. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the few-shot open-set object detection (FSOSOD), which aims to quickly train a detector based on few samples while detecting all known classes and identifying unknown classes. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new FSOSOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any pseudo-unknown samples for training. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the recall of unknown classes by 5%-9% across all shots in VOC-COCO dataset setting.
translated by 谷歌翻译
Covid-19-Pandemic继续在社交媒体上提出各种讨论或辩论的主题。为了探索大流行对人们生活的影响,了解公众对与大流行有关的实体(例如药物,疫苗)对社交媒体的关注和态度至关重要。但是,对现有命名实体识别(NER)或目标情感分析(TSA)数据集培训的模型具有有限的理解与COVID相关的社交媒体文本的能力有限,因为这些数据集并未从医学角度设计或注释。本文释放了Mets-COV,这是一种包含医疗实体的数据集和与COVID相关的推文中的目标情感。 Mets-COV包含10,000条带有7种实体的推文,包括4种医疗实体类型(疾病,药物,症状和疫苗)和3种通用实体类型(人,位置和组织)。为了进一步调查推文用户对特定实体的态度,选择了4种类型的实体(人,组织,药物和疫苗),并用用户情感注释,从而产生了具有9,101个实体(5,278个推文)的目标情感数据集。据我们所知,METS-COV是第一个收集与COVID相关推文的医疗实体和相应情感的数据集。我们通过广泛的实验对经典机器学习模型和最先进的深度学习模型进行基准测试。结果表明,该数据集在NER和TSA任务方面都有大量改进的空间。 METS-COV是开发更好的医学社交媒体工具并促进计算社会科学研究的重要资源,尤其是在流行病学方面。我们的数据,注释准则,基准模型和源代码公开可用(https://github.com/ylab-open/mets-cov),以确保可重复性。
translated by 谷歌翻译
通过自我监督的学习预先训练的大型语言模型在各种各样的任务上表现出令人印象深刻的零击功能。在这项工作中,我们介绍了Welm:一种针对中文的精心读取的预训练的语言模型,能够无缝执行不同类型的任务,以零或几次演示。 Welm通过“阅读”涵盖广泛主题的精选高质量语料库来接受10b参数的培训。我们表明,韦尔姆拥有有关各种领域和语言的广泛知识。在18个单语(中文)任务中,WELM可以大大优于现有的预训练模型,尺寸相似,并匹配高达25倍大的模型的性能。韦尔姆还表现出强大的多种语言和代码转换理解的能力,优于预先对30种语言进行预培训的现有多语言模型。此外,我们收集了人工编写的提示,并通过多次培训进行了大量的中文和微调韦尔姆的监督数据集。最终的模型可以实现对看不见的任务类型的强烈概括,并在零射门学习中优于无监督的韦尔姆。最后,我们证明韦尔姆具有解释和校准自己的决策的基本技能,这可能是未来研究的有希望的方向。我们的模型可以从https://welm.weixin.qq.com/docs/api/应用。
translated by 谷歌翻译
分散的学习对合作多代理增强学习(MARL)表现出了巨大的希望。但是,非平稳性仍然是分散学习的重大挑战。在论文中,我们以最简单和基本的方式解决了非平稳性问题,并提出\ textit {多代理替代Q学习}(MA2QL),在那里,代理商轮流通过Q学习来更新其Q-函数。MA2QL是完全分散合作MARL的一种\ Textit {Minimalist}方法,但理论上是基础的。我们证明,当每个代理商在每个回合都保证$ \ varepsilon $ -Convergence时,他们的联合政策会收敛到NASH平衡。实际上,MA2QL仅需要对独立Q学习(IQL)的最小变化。我们经验评估MA2QL对各种合作的多代理任务。结果表明,MA2QL始终胜过IQL,尽管这种变化很小,但它验证了MA2QL的有效性。
translated by 谷歌翻译
重要性采样(IS)是非政策评估中的一种流行技术,它重新赋予了重播缓冲液中轨迹的回归以提高样本效率。但是,对IS进行培训可能是不稳定的,以前试图解决此问题的尝试主要集中于分析IS的差异。在本文中,我们揭示了不稳定性与IS的重复使用偏见的新概念有关 - 由重复使用缓冲液重用进行评估和优化引起的非政策评估偏差。从理论上讲,我们证明了对当前策略的非政策评估和优化,并通过重播缓冲区的数据导致目标高估,这可能会导致错误的梯度更新并退化性能。我们进一步提供了重复使用偏差的高概率上限,并表明控制上限的一个项可以通过引入非政策算法的稳定性概念来控制重复使用偏置。基于这些分析,我们最终提出了一种新颖的偏见调查重要性抽样(BIRIS)框架以及实际算法,可以减轻重复使用偏见的负面影响。实验结果表明,我们基于BIRIS的方法可以显着提高一系列连续控制任务的样品效率。
translated by 谷歌翻译